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This paper uses numerical simulation to analyse the effects of uniform rotation on 
homogeneous turbulence. Both large-eddy and full simulations were made. The 
results indicate that the predominant effect of rotation is to decrease the rate of 
dissipation of the turbulence and increase the lengthscales, especially those along 
the axis of rotation. These effects are a.consequence of the reduction, due to the 
generation of inertial waves, of the net energy transfer from large eddies to small ones. 
Experiments are also influenced by a more complicated interaction between the 
rotation and the wakes of the turbulence-generating grid which modifies the nominal 
initial conditions in the experiment. The latter effect is accounted for in simulations 
by modifying the initial conditions. Finally, a two-equation model is proposed that 
accounts for the effects of rotation and is able to reproduce the experimental decay 
of the turbulent kinetic energy. 

1. Introduction 
Rotation is known to have profound effects in fluid mechanics. Geophysical flows 

are strongly influenced by the Earth's rotation, and shear flows (boundary layers, 
for example) are stabilized or destabilized by the introduction of rotation. The effects 
of rotation are described by Greenspan (1968), and in other texts. 

Since turbulence is created by instability, it is strongly affected by system rotation. 
The effect of rotation on turbulence production is discussed in the papers of Johnston, 
Halleen & Lezius (1972), Ferziger & Shaanan (1976) and Tritton (1981). The effect 
of rotation on homogeneous isotropic turbulence, however, is more subtle and not 
well understood. There have been three experiments in this area, and the inferences 
therefrom differ with respect to the effect of the rotation on the decay of the 
turbulence. 

The experiment by Traugott (1958) is similar in design to that of Wigeland & Nagib 
(1978) described below. For this reason and because only one case with rotation was 
presented by Traugott, we shall not discuss this experiment in detail. Traugott's 
primary conclusion is that rotation decreases the rate of decay of the turbulence, 
i.e. the turbulence decays more slowly in the presence of rotation. 

Ibbetson & Tritton (1975) used a unique apparatus in which turbulence was 
produced by dropping a grid through a rotating chamber. They found that the 
turbulence decayed more rapidly when the apparatus was rotating than when it was 
not. In this experiment, the chamber was small and the measurements were made 

t Present address: PEDA Corporation, Palo Alto, CA. 



322 J .  Bardina, J .  H .  Ferziger and R .  S .  Rogallo 

at relatively long time intervals. As a result, the walls of the chamber probably 
affected the decay of the turbulence, which should therefore not be regarded as 
homogeneous. I n  fact, Ibbetson & Tritton offered the interaction of the walls with 
inertial waves as the probable explanation of the observed change in the rate of decay 
of the turbulence. As this flow was not truly homogeneous, it cannot be used for the 
purposes of this paper. 

The most recent experiment, by Wigeland & Nagib (1978), hereinafter referred to 
as WN, consisted of a uniform flow set into solid-body rotation as it passed through 
a rotating honeycomb and a rotating turbulence-generating grid. The decay of the 
resulting turbulence was then studied in a stationary test section. 

The primary purpose of WN was to  resolve the apparently contradictory con- 
clusions ofTraugott (1958) and Ibbetson & Tritton (1975). For this reason WN utilized 
a number of different flow conditions in which thc flow speed, turbulence-generating 
grid and rotation rate were varied. The ranges of thc principal parameters utilized in 
these experiments are shown in table I .  Reynolds and Rossby numbers based on both 
the mesh size (subscript M) and the turbulence lengthscale (subscript T) are presented. 

The WN results show various effects of rotation. In most cases, the turbulence 
intensity decays more slowly and the time-integral scales increase more rapidly as 
the rotation rate is increased. I n  a few cases, the turbulence intensity decays faster 
at small rotation rates but slower a t  larger rates of rotation. In  the latter cases, the 
time-integral scale for the normal (to a the imposed angular velocity) components 
of the turbulent velocity shows no change relative to the case without rotation. The 
dominant effect of rotation is to decrease the rate of decay of the turbulence. The 
increasing rates of decay sometimes seen a t  low rotation rates appear to  be a separate 
effect of rotation on the process of turbulence generation just downstream of the grid. 

A number of other experiments on the interaction of turbulent flow with rotation 
have been performed. These are mainly related to applications in which inhomogeneity 
is an important feature of the flow (meteorological and oceanographic problems and 
turbomachinery) and are not of direct interest to  us. Among these, however, the 
recent works of Hopfinger & Browand (1982) and Hopfinger, Browand & Gagne (1982) 
should be mentioned. They report an experiment performed in a rotating tank with 
an oscillating grid a t  the bottom. Since the grid produces turbulence only at  the 
bottom of the tank, this experiment is quite inhomogeneous, but some of their 
observations will be referred to  later in this paper. 

The current state of the art in turbulence modelling is described in the Evaluation 
Committee Report of the 198&81 AFOSR-HTTM-Stanford Conference on Complex 
Turbulent Flows (Kline, Cantwell & Lilley 1982), which states in part: ‘The fact that  
none of the present methods is influenced by rotation of the turbulent flow is an 
indication that present models are deficient in this respect .’ Turbulence models which 
take rotation into account have been proposed by Rodi (1979) and Launder, Priddin 
& Skarma (1977). Rodi’s model contains a term proportional to the spatial gradient 
of the rotation rate and has no effect on flows in uniform rotation, which are 
considered here. The model proposed by Launder et al. (1977) is not well behaved 
at high rates of rotation (or streamline curvature) because the energy-dissipation rate 
can become negative. 

As the effects of rotation on turbulence are both multifold and subtle, the 
development of models which account for the effects of rotation requires an 
understanding of the processes occurring in these flows. I n  this paper, we study 
homogeneous turbulence in uniform rotation ; effects that occur only in the presence 
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Parameter 

Rotation rate LI s-l 
Downstream distance x / M  
Time s 
Re, = U M / u  
Ro, = U/QM 
Re, = ( fQ2) 'A/u  
Ro, = (@&")!/QA 

Traugott ( 1958) 

210 
17.5-27.5 

0.008-0.014 
5500 

10 
30 

1.65 

Ibbetson 
& Tritton (1975) 

1-6.4 
144-3600 

4-100 
1200 

28-180 - 10 
- 4  

Wigeland 
& Nagib (1978) 

6-80 
2&-180 

0.0054.083 
900-3800 

1CMOO 
9-1 8 

0.4-16 

TABLE 1. Parameter range of experiments. M is the mesh size of the turbulence-generating grid, 
U the experimental mean velocity in the z-direction, Qa the turbulence intensity per unit mass, A 
the Taylor microscale and u the kinematic viscosity. 

of mean strain are excluded. The Reynolds-stress equations for a homogeneous flow 
in uniform rotation about the 2,-axis are, in a rotating coordinate frame: 

= 252(u1u2)-€11+q511; 
2 dt 

1 d(u2) 
2 dt 
-- = - 252(u1 u,) - €22 + $hZ2 ; 

1 d(u2) 
2 dt 
-- = --e33+q533; 

d(u1u2) = 2~((u;)-(u;))-€12+q512; 
dt 

where ( ) indicates an ensemble or time average, ui the component of the turbulence 
velocity in the i-direction and et, and q5tj are the components of the dissipation and 
pressure-strain tensors, respectively. For definitions of the latter, see Reynolds ( 1976). 

When the first three of these equations are summed, the sums of the rotation and 
pressure-strain terms each vanish, and the resulting equation for the turbulence 
intensity (Q2 = uf+u;+u:) shows no direct effect of rotation. Furthermore, if the 
turbulence is isotropic, the rotation and pressure-strain terms disappear individually 
from (1). Thus it appears that rotation merely redistributes energy among unequal 
Reynolds-stress components. Furthermore, rotation enters the equations for the 
components of the dissipation in a fashion almost identical with the way it enters the 
Reynolds-stress equations, so the effects we seek are not to be found in these equations 
either. 

The effects of rotation are manifested through changes in the spectrum of the 
turbulence caused by nonlinear interactions ; this has been shown explicitly by 
Bertoglio (1982). Greenspan (1968) made a linear analysis of the Fourier components 
of the velocity and showed that uniform rotation alters their phase but not their 
amplitude. Hence rotation has no direct effect on any quadratic statistical quantity, 
such as the Reynolds stress. However, rotation does affect odd moments of the 
turbulence velocity directly; this has also been shown by Aupoix, Cousteix & Liandrat 
( 1983). 

In the following sections, we present the results of numerical simulations of initially 
homogeneous isotropic turbulence in uniform rotation and show that is is possible 

_ _ _  
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to duplicate the phenomena observed in the WN experiment. By taking advantage 
of the greater control over initial conditions that one has in computer simulations, 
we demonstrate that the increase in the decay rate at  low rotational speeds found 
in some of WN's cases is due to interactions that occur in the initial region of the 
flow, and that the primary effect of rotation is indeed to decrease the rate of decay 
of the turbulence. 

By further investigation of the results, we show that the Reynolds-stress tensor 
remains nearly isotropic in the presence of rotation and that the principal effect of 
rotation is to inhibit energy transfer to small scales resulting in increased turbulence 
lengthscales, particularly those in the direction of the axis of rotation. Finally, we 
offer a theoretical explanation of the effect and a simple model capable of predicting 
it. 

2. Approach 
We shall use numerical solutions of the Navier-Stokes equations as the basis for 

our work. In a frame rotating with constant angular velocity A2 about the x3 axis, 
these equations (Greenspan 1968) are 

a ap a2uI au,+- (up*)  = 2si,,Jzui--+v- 
at axj axi 

together with the continuity equation 

Equation (2) determines the evolution of the flow. The first term on the right-hand 
side of (2) represents the Coriolis force; the centrifugal force has been combined with 
the pressure gradient so that p in (2) is the sum of the centrifugal potential and the 
static pressure divided by the density, i.e. 0.5(52 x r)*(52 x r )  +p,/p. 

The initial velocity field is isotropic, homogeneous, divergence-free, and has a given 
energy spectrum, but is otherwise random. 

Statistical homogeneity is replaced by strict periodicity in all three spatial 
directions, and Fourier (spectral) methods are used to compute all spatial derivatives. 
The reduced pressure is obtained as the solution of the Poisson equation that ensures 
continuity. The velocity field is advanced using a fourth-order Runge-Kutta method. 
All simulations were alias-free and were run on the NASA-Ames ILLIAC IV machine. 

Two computational levels are used in this work. The first level is large-eddy 
simulation in which the large scales of motion (denoted by an overbar) are computed 
explicitly and the sub-grid scales are modelled by means of a simple eddy-viscosity 
model due to Smagorinsky (1963) : 

723 = (C, I SI SI, 1 (4) 
- 

where & =_ #LI/ax,+ aEj/ax,) is the strain rate of the large-scale field Ei, 
1812 = 2St,S,, A is the filter width used in the calculation, 71j is the subgrid-scale 
Reynolds stress, and C,  = 0.21 was obtained by fitting the decay of isotropic 
turbulence. For further details of large-eddy simulation, see Ferziger & Leslie (1979) 
or Ferziger (1981); a brief summary is given in the Appendix. 

The initial energy spectrum for the large-eddy simulations was obtained by scaling 
the initial energy spectrum of Comte-Bellot & Corrsin (1971) such that the total 
energy and dissipation approximately match those of WN. The initial Reynolds 
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number based on Taylor microscale was approximately 15 ; the filter width was chosen 
so that q, d/Qi = 0.24-4. The WN experiment exhibited a small anisotropy that was 
not modelled in the computation, so comparisons between the experiment and the 
computational results cannot be completely quantitative. Full (defiltered) turbulence 
quantities were calculated from these simulations using the method developed by 
Bardina, Ferziger & Reynolds (1980). Large-eddy simulation was used principally to 
investigate the effect of initial conditions and in matching the WN results; 
16 x 16 x 16 and 32 x 32 x 32 grids were used. 

The second approach was full simulation. In this method, the equations of motion 
(2) and (3) are solved directly, without filtering or averaging. Since this approach 
eliminates the uncertainty that arises from the use of a subgrid scale model and 
defiltering in large-eddy simulation, it is the preferred method for investigating the 
effects of rotation on turbulence in detail. For these simulations, the initial energy 
spectrum had a square shape and was allowed to decay until the velocity field 
approximated homogeneous isotropic turbulence ; the resulting field was used as the 
initial condition for all rotation cases. 

For further details of the large-eddy simulations, see Bardina (1983) and for details 
of the full simulations see Rogallo (1981). 

3. Computational results 
The first, exploratory, simulations were made with the large-eddy-simulation 

approach to determine the feasibility of using the method. It was found that large-eddy 
simulations with 16 x 16 x 16 grids are incapable of following evolution of these flows, 
because the lengthscales grow rapidly and become constrained by the computational 
period in a time short compared to the observation period of WN. 

Large-eddy simulations were run using a 32 x 32 x 32 grid at  various rotation rates; 
the parameters are given in table 2. The initial conditions for each case were matched 
to the corresponding WN case in the manner described above. It is important to point 
out again that in the WN experiment the initial conditions for each of the three 
rotation rates are not the same, although WN intended them to be so; the differences 
are important in understanding the results, as we shall show below. Figure 1 shows 
the decay of the turbulence intensity, together with the corresponding WN results. 
A striking similarity to the WN experimental results is apparent. At  the small 
rotation rate, SZ = 20 s-l, the decay of the turbulence is faster than in the unrotated 
flow, while at the high rotation rate, Q = 80 s-l, the decay of turbulence is slower 
than in the unrotated flow. 

It is important to observe again that the initial turbulence intensity and dissipation 
rate are different in each one of WN’s cases, including the ones presented above ; in 
most cases, both intensity and dissipation rate increase with the rotation rate. As 
we shall demonstrate below, in the absence of any other effect of rotation, these 
variations in the initial conditions would produce a faster decay of the turbulence. 
On the other hand, we shall show below that the effect of rotation on initially isotropic 
turbulence decreases the rate of decay of the turbulence. At the lower rotation rate, 
the effect of the initial conditions may dominate and a faster decay rate will then 
be observed. At the higher rotation rates, the rotation effects dominate the effects 
of the initial conditions and the turbulence decays more slowly than in the case of 
no rotation. 

Thus there are two mechanisms at  work in these flows. In the initial region, the rota- 
tion influences the turbulence produced by the grid, increasing both the turbulence 
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Rossby number Ro, 
Initial turbulence intensity U, /Q 
Initial dissipation E 

- 
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5-1 0 20 
m/s 5.3 5.45 
mm 6.25 6.25 

20-70 20-70 
17.4-15.1 15.S13.8 

334.1 329.1 
m2/s3 2.60 3.58 

a3 6.3-1.2 

TABLE 2. Experimental data for one Wigeland & Nagib (1978) data set 

80 
5.7 

6.25 
20-70 

18.0-16.0 
1.4-0.4 
327.9 
3.38 

I I 

0 20 40 60 80 100 
U t / M  

FIGURE 1 .  Results of large-eddy simulation compared to the experimental data of Wigeland & Nagib 
(1978). The initial energy and dissipation rate are matched to the experimental values. The grid 
was 32 x 32 x 32, and the model constant C,  = 0.21. 

intensity and dissipation rate a t  the initial experimental station just downstream 
of the grid. The exact mechanism that produces these effects is not understood 
at present, but i t  is probably connected with the stabilization/destabilization of 
shear flows by rotation. 

In  order to  test the hypothesis that  the effect of rotation on isotropic turbulence 
is to decrease the rate of dissipation, a further set of large-eddy simulations was made. 
Initial conditions identical with those used in the no-rotation case shown in figure 1 
were used at all rotation rates. Figure 2 shows the time history of the decay of 
turbulence intensity with rotation rates of 0, 20, and 80 s-l. The results support the 
hypothesis. Figure 3 shows that the average lengthscale of the energy-containing 
eddies, 1 = Q3/s,  grows more rapidly with increased rotation rate. Further details 
concerning the lengthscales are given below. 

Full simulations were used to investigate the effects of rotation on the turbulence 
in more detail. I n  these cases, the turbulence was allowed to develop in the absence 
of rotation for some time. When the skewness of the velocity derivative reached its 
equilibrium value, the rotation was ‘turned on’. This is an impossibility in the 
experiment, because i t  violates Helmholtz’s theorem, but there is no reason why one 
cannot simulate it. 

All full simulations reported here had the same isotropic initial conditions ; the 
non-dimensional initial turbulence intensity was 4.88, the non-dimensional initial rate 
of energy dissipation was 16.78, and the initial Reynolds number based on the Taylor 
microscale was 17.4. The flow was allowed to decay until the non-dimensional 
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U t / M  

FIGURE 2. The decay of turbulence intensity in homogeneous rotating flows obtained by large-eddy 
simulation. All caws have the same initial conditions a8 the B = 0 caae shown in figure 1. 
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FIGURE 3. Growth of the average lengthscale in the homogeneous rotating flows of figure 2. 

0 0.5 1 .o 1.5 2.0 2.5 
We: 

FIGURE 4. The decay of turbulence intensity in homogeneous rotating flows obtained by full 
simulation (64464x64 grid). All cases had the same initial conditions and were run without 
rotation until t = 0.3. 
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intensity became 1 before the rotation was turned on. Rotation rates of 0, 20, 40, 
and 80 s-l were imposed on the 00w. The ranges of Reynolds and Rossby numbers 
were 13-17 and 0.3-5.4, respectively. Figure 4 shows the time history of the decay 
of the turbulence intensity for rotation rates of 0, 20, 40, and 80 s-l. These results 
further confirm the hypothesis that rotation decreases the rate of decay of the 
turbulence. 

One might expect rotation to produce anisotropy of the turbulence intensities. This 
is easily checked. As shown in figure 5 ,  no significant differences among the 
components of the turbulence develop, but they appear to exchange small amounts 
of energy with each other. The exchange is not precisely periodic, but the timescale 
is approximately the inverse of the rotation rate; this could be anticipated from the 
Reynolds-stress equations (1).  

We noted above that the lengthscales grow more rapidly when rotation is present, 
and one might expect them to become anisotropic. To investigate this, we computed 
the integral lengthscales : 

where Qa,(rl, r2 ,  r3) is the two-point correlation function of the velocity components 
ui and uj, and Q2 is the turbulence intensity. The limits of integration should be 
infinite, of course, but in the simulation they were cut off at the point at which 
Qu/Q2 = 0.01. The results for the no-rotation case are shown in figure 6.  As expected, 
Lll, N L33, N 2L11, N 2L3,. in this case ; all of these lengthscales appear to grow 
approximately linearly in time over the range studied. The results for a = 80 s-l are 
shown in figure 7 .  All of the lengthscales have increased relative to the no-rotation 
case, but the most dramatic increases are in the lengthscales involving velocity 
components perpendicular to the rotation (3) axis. The largest increase is in Lll, 3. 
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FIGURE 6. Growth of integral lengthscales in homogeneous 
isotropic turbulence (the C2 = 0 case of figure 4). 
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0 0.5 1 .o 1.5 2.0 2.5 

€0 t/Qs 

FIGURE 7. Growth of integral lengthscales in the SZ = 80 s-l case of figure 4. The initial 
conditions are identical with those used to generate figure 6. 

4. Physical interpretation 
All of our simulations and the WN experiment were done at  low Reynolds numbers. 

Extension of the results to higher Reynolds numbers must be done with caution. 
The computational results demonstrate that rotation decreases the rate of energy 

dissipation of isotropic turbulence and increases the lengthscales. This suggests that 
the rotation interferes with the normal energy-cascade mechanism. 

At low Rossby numbers &/1/3SZL, the motion tends to become essentially 
two-dimensional, in accord with the Taylor-Proudman theorem (Greenspan 1968). 
Hopfinger et al. (1982) observed a transition to an essentially two-dimensional state, 
which they called the quasi-geostrophic state, at  Ro N 0.2 (in our nomenclature). 
Since the WN flows and our simulations have Rossby numbers larger than this, we 
do not expect to observe this state. However, as already noted, we did observe a 
tendency for the lengthscales to increase more rapidly as the Rossby number is 
decreased. The growth of the lengthscales along the rotation axis is particularly rapid, 
indicating that the flow may be tending to the quasi-geostrophic state. No attempt 
to simulate the full transition was made, because, when the lengthscales become 
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FIGURE 8. Energy transfer vs. wavenumber at zero Rossby number: the state at t = 0 is 
isotropic turbulence. The values shown in the legend are 2Qt. 

comparable to  the size of the computational box, the validity of the numerical method 
is called into question and the results would be of dubious value. As Hopfinger et al. 
concentrated on the quasi-geostrophic region, their results cannot be compared with 
ours. 

Although the large Rossby numbers used in the simulation render quantitative 
comparison with linear theory impossible, the latter may be used in a qualitative 
manner to  explain some of the observed phenomena. In  isotropic turbulence, the 
cascade process is a consequence of mutual deformation of randomly oriented vortex 
tubes. Rotation-induced Coriolis forces tend to align the vortex tubes with this axis; 
this is the essence of the Taylor-Proudman theorem. In doing so, rotation inhibits 
the cascading of energy to the smaller scales. 

A more mathematical version of this argument can be constructed by noting that, 
for small Rossby numbers, Greenspan (1968) has shown that the velocity can be 
expressed as : 

u( k ,  t ) = u + ( k ,  $) ciwt + u- ( k ,  $) e-'("t, (6) 

where w ( k )  = 2Qk,/k (k  being the wave vector) and u* are amplitudes of the inertial 
waves. Equation (6) states that, in the limit of small Itossby number, the velocity 
field may be regarded as a superposition of inertial waves with characteristic 
frequency w which are modulated on the longer turbulence timescale L/q. Cascading 
is an effect of the nonlinear terms in the Navier-Stokes equations ; contributions to 
u(k) from products of u(k') and u(k") are allowed only when k = f k' f k". As Ro+O, 
the contributing interactions are required to  satisfy the additional resonant 
constraint : 

in order to transfer energy. At low Rossby numbers, this criterion is satisfied 
principally for small values of k,, so we expect the nonlinear interactions to be limited 
to small k,. 

w f w ' f w "  = 0, (7) 
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RQURE 9. Distribution of energy transfer in wave space at 
2 9 t  = in of the flow shown in figure 8. 

To illustrate these effects, we constructed a Ro = 0 simulation, by taking an 
isotropic turbulence field from a simulation and letting it evolve according to linear 
theory. Figure 8 shows the energy-transfer spectrum from this simulation. The energy 
transfer undergoes a rapidly damped oscillation in time. Its spectrum is not isotropic, 
however. Figure 9 shows the expected tendency of the transfer spectrum to become 
two-dimensional, i.e. to be concentrated near k, = 0. It is indeed surprising that the 
energy remains equally distributed among the three velocity components. 

Bertoglio (1982) and Bertoglio & Mathieu (1983) have made simulations in which 
the nonlinear interactions were completely ignored, and reached similar conclusions. 

5. Implications for turbulence modelling 
The great majority of calculations of turbulent flows use averaged equations which 

require modelling for closure; for reviews of this subject see Reynolds (1976) and Rodi 
(1981). In the introduction we noted that none of the presently available turbulence 
models properly accounts for the effects of rotation. 

Since the evidence presented above indicates that the components of the turbulence 
intensity remain nearly equal when rotation is imposed on isotropic turbulence, there 
is no need for a model which computes the components of the turbulence intensity. 
On the other hand, we have found that the lengthscales of the turbulence become 
anisotropic under the influence of rotation. A model which allows anisotropy of the 
lengthscales is based on the tensor volume of turbulence (Lin & Wolfstein 1980), 
but, as W. C. Reynolds (private communication 1981) has shown that some of the 
quantities in this model may not be finite in all situations, we prefer not to use it. 
Another model which is based on the integral lengthscales of the turbulence and which 
allows them to be anisotropic (Donaldson 1973; Sandri & Cerasoli 1981) is currently 
at an early stage of development. Finally, Reynolds (1982) has proposed a model 
allowing anisotropic dissipation. As these models are new and not well understood, 
we shall consider only simple models. 

We shall consider a model based on differential equations for the turbulence 
intensity Qz and dissipation E ;  these are related to the lengthscale 1 by 1 = Q3/s, a 
common assumption in turbulence modelling. The equation for the turbulencc 
intensity is both simple and exact for the flows considered here : 

dQ2 - = -2E, 
dt 
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and shows no explicit effects of rotation. Thus any effects of rotation must occur in 
the dissipation equation. Figure 3 suggests that  the effect is approximately linear in 
the rotation rate, and therefore that the dissipation be modelled by : 

ds €2 - _  - - c ,  - -C2Q€,  

dt Q2 
(9) 

where SZ is the rotation rate. For more general flows, in which the rotation rate is 
a function of position or where mean strain may be present, the rotation rate may 
be locally replaced by (SZU Q,/2);, where Q, = +(aui/axj - au,/ax,) is the rotation 
tensor of the mean flow. For SZ = 0, (9) reduces to a commonly used model. The 
constant c1 is obtained by requiring the model to  predict the decay of isotropic 
turbulence a t  high Reynolds number; Reynolds (1976) found c, = y. The new term 
causes the turbulence intensity t o  decay more slowly as the rate of rotation is 
increased. For sufficiently high rotation rate and long enough time, the model predicts 
that  the dissipation will go to  zero. This is not unreasonable, as these are the 
conditions under which the flow becomes two-dimensional. I n  the two-dimensional 
state, turbulent dissipation will cease and only a small viscous dissipation will remain. 
A low-Reynolds-number modification may be needed to deal with this situation. Also 
note that this model may need modification a t  rotation rates larger than those for 
which i t  has been tested. For further comments on this, see Aupoix et al. (1983). The 
system of equations (8) and (9) can be solved analytically: 

where 
2 n=- 

c , -2 '  

This two-equation model was tested against the WN experimental results given 
in table 3. The constant cp was obtained by fitting the model to  the experimental data 
of Case B for SZ = 80 s- , ;  we find c2 = 0.15. The initial values of Q2 and B were obtained 
from the WN experiment ; as noted earlier, they vary with rotation rate. 

The two-equation model of (8) and (9) accurately predicts all the WN experimental 
data on the turbulence intensity. Figure 10 shows the prediction for a case in which 
the turbulence intensity decays at a slower rate as the rotation rate is increased. 
Figure 11 shows the prediction of the two-equation model for a case in which the 
turbulence intensity decays faster a t  52 = 20 s-' and slower at 80 s-l; as shown 
earlier, the faster decay a t  52 = 20 s-l is an effect of the initial conditions. Figure 12 
shows the prediction of the two-equation model for the WN case used as a test case 
in the 1980-81 AFOSR Stanford-HTTM Conference on Complex Turbulent Flows. 
No entry to  the conference was able to  predict this flow, but the model proposed here 
has no difficulty with it. 

The rotation term in (9) may play an important role in shear flows. Since any shear 
can be decomposed into plane strain and rotation, i t  is possible that the new term 
proposed here will help predict differences between strained and sheared flows; this 
is a serious deficiency in present models. The model has been used by Mansour, Kim 
t Moin (1983) who found that addition of the new term in the model improved 
prediction of the reattachment length for flow over a backward-facing step. However, 
they found that cp = 0.07 was required. 

Aupoix et al. (1983) have studied rotating shear flows with large-eddy simulation 
and agree that the rotation term in the model is needed. They further suggest that 
the 'production of dissipation' term (which is zero for the flows considered here) also 
needs t o  be modified to  account for the effects of rotation. 
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Case A. M = 0.0039 m 
a 5-1 0 20 80 
U m/s 8.69 8.66 8.82 
us m/s 8.69 8.67 8.96 
Q' (m'ls') 0.2125 0.2021 0.2314 
8 (mz/sa) 17.67 16.45 18.19 
Re, 17-14 17-14 18-15 
ROT a, 13.5-1.7 3.6-0.6 

a s-1 0 20 80 
U m/s 5.33 5.45 5.48 
us m/s 5.33 5.46 5.71 
Q2 (m21s') 0.0850 0.0906 0.0995 

Re 17-15 16-14 18-16 
Ro a, 6.3-1.2 1.5-0.4 

a a-1 0 20 80 
U m/s 8.51 8.58 8.79 
us mls 8.51 8.59 8.93 
Q' (m'ls') 0.1770 0.1774 0.1969 
E (m'/sS) 24.27 22.56 22.42 
Re 12-9 12-10 14-11 
Ro 00 16-1.2 4 . 0 . 4  

Case B. M = 0.00625 m 

E (mz/sa) 2.649 3.691 3.300 

Case C. M = 0.00254 m 

TABLE 3. Experimental data of Wigeland & Nagib (1978) at initial 
time ( U t / M  = 20) and parameter ranges covered 

n 

I 1 

0 25 50 75 100 I25 I50 
UIIM 

FIGURE 10. Two-equation model prediction of Wigeland & Nagib's (1978) experimental results 
on the decay of homogeneous rotating turbulence ; Case A of table 3. 

6. Conclusions 
We have shown that computer simulation can be used as an aid to understanding 

the effect of rotation on homogeneous isotropic turbulence. Two effects were found 
in the experimental results. In the initial region, there is a rotation effect on the 
generation of the turbulence which increases the initial turbulence intensity and 
dissipation. Downstream, the primary effect of rotation on the turbulence is a 
redistribution of energy in wavenumber space, leading to a decrease in the dissipation 
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FIGURE 11. Two-equation model prediction for Case B of table 3. 
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FIQURE 12. Two-equation model prediction for Case C of table 3. 

and an increase in the lengthscales, principally those in the direction of the axis of 
rotation. 

The observed effects can be explained in terms of conversion of turbulence energy 
to inertial waves, resulting in a greatly reduced energy cascade. 

Finally, a two-question model has been offered which is capable of reproducing the 
reduced dissipation in the absence of mean strain. 

The Stanford portion of this work was done under grant NCC-2-15, sponsored by 
NASA-Ames Research Center. The authors wish to acknowledge the contributions 
to this work made by W. C. Reynolds, M. Rubesin, and P. Moin. 

Appendix. Introduction to large-eddy simulation 

field. The filter function utilized is the following Gaussian filter: 
I n  large-eddy simulation, the large eddies are defined by filtering the full velocity 

G ( r ;  A )  = e--7’/64’ (A 1)  

where A is the filter width and the filtered field is mathematically defined aa: 

U ( r ,  t )  = G ( r -  r’; A )  u(I’, t )  dr’. s 
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The governing equations of motion of the large eddies are determined by applying 
the filter function to ( 2 )  and (3) of the text. We obtain 

and 

where 

aut a __ 1 aji a z f i  aT 
-+-u u - 2 & t j 3 5 2 a * - - - + v ~ + ~ ,  
at axj 3 - pax,  axjaxj axj 

au. 
axt 
2- - 0, 

-- 
Ttj  = ut uj - fit fi* 

are the subgrid-scale Reynolds stresses which are modelled by using the Smagorinsky 
(1963) model : 

and VT = (CLl)ZR, (A 7 )  

where S = 2(St3 Stj$ is the strain rate of the large-scale field and c is a constant which 
can be obtained by any of several methods. The value of the model constant used 
in this paper is 0.21 and was obtained by fitting the experimental results of 
Comte-Bellot & Corrsin (1971) on the decay of homogeneous isotropic turbulence. 

Since large-eddy simulation provides only the large-scale field, the full turbulence 
intensity is obtained by using the following equation proposed by Bardina et al. (1980, 
1983) : 

(A 8) 

where @ = (fi6fit) and I = (2vTStjStj) are the turbulence intensity and rate of 
dissipation of the large eddies, respectively. Equation (A 8) has been successfully 
tested against experimental results for homogeneous shear flows and isotropic flows. 
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